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Abstract. The general features of quark and pion condensation in dense quark matter with flavor asymmetry
have been considered at finite temperature in the presence of a chromomagnetic background field modeling
the gluon condensate. In particular, pion condensation in the case of a constant abelian chromomagnetic
field and zero temperature has been studied both analytically and numerically. Under the influence of the
chromomagnetic background field the effective potential of the system is found to have a global minimum
for a finite pion condensate even for small values of the effective quark coupling constant. In the strong field
limit, an effective dimensional reduction has been found to take place.

1 Introduction

It is well known that effective field theories with four-
fermion interaction (the so-called Nambu–Jona–Lasinio
(NJL) models), which incorporate the phenomenon of dy-
namical chiral symmetry breaking, are quite useful in de-
scribing low-energy hadronic processes (see e.g. [1–5] and
references therein). Since the NJL model displays the same
symmetries as QCD, it can be successfully used for sim-
ulating some of the QCD ground state properties under
the influence of external conditions such as temperature,
baryonic chemical potential, or even curved space-time
etc. [5–14]. In particular, the role of the NJL approach
becomes significantly more important, when numerical lat-
tice calculations are not admissible in QCD, like at nonzero
baryon density and in the presence of external gauge
fields [15–22]. In this way, it was observed in the framework
of a (2+1)-dimensional NJL model that an arbitrary small
external magnetic field induces the spontaneous chiral
symmetry breaking (CSB) even at arbitrary weak inter-
action between fermions [23–27]. Later it was shown that
this phenomenon (the so-called magnetic catalysis effect)
displays a universal character and can be explained on the
basis of the dimensional reduction mechanism [28–37] (for
the modern state of the magnetic catalysis effect and its ap-
plications in different branches of physics, see the reviews
in [38–41]).
As an effective theory for low-energy QCD, the NJL

model does not contain any dynamical gluon fields. How-
ever, such a nonperturbative feature of the real QCD vac-
uum as the nonzero gluon condensate

〈
F aµνF

aµν
〉
can be
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mimiced by external chromomagnetic fields. In particu-
lar, for a QCD-motivated NJL model with gluon conden-
sate (i.e. in the presence of an external chromomagnetic
field) and finite temperature, it was shown that a weak
gluon condensate plays a stabilizing role for the behav-
ior of the constituent quark mass, the quark condensate,
meson masses and coupling constants for varying tempera-
ture [42, 43]. Then, in a series of papers devoted to the
NJL model with the gluon condensate, it was shown that
an external chromomagnetic field, similar to the ordinary
magnetic field, serves as a catalyzing factor in the fermion
mass generation and dynamical breaking of chiral sym-
metry as well [44–47]. The basis for this phenomenon is
also the effective reduction of the space dimensionality in
the presence of strong external chromomagnetic fields, and
this does not depend on the particular form of the field
configurations [48].
At present, it is well-established (see, e.g., [49]) that the

gluon condensate is a very slowly decreasing function of
the baryon density (baryon chemical potential). So, in cold
quark matter, it is a nonzero quantity even at sufficiently
large baryon densities, which are expected to exist in-
side neutron star cores. Evidently, the consideration of the
gluon condensate may change significantly the generally
accepted picture of physical processes in the baryon mat-
ter. For instance, according to the modern point of view,
the color superconducting (CSC) phenomenon can be real-
ized in neutron star cores (see the reviews [7, 8]). However,
according to [50–53], the critical parameters of this phase
transition strongly depend on the value of the gluon con-
densate (in this case, only its chromomagnetic component
survives). Moreover, it turns out that even for a rather
weak quark coupling, different external chromomagnetic
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field configurations induce the CSC phenomenon [54–56].
Quite recently it was found that some combinations of ex-
ternal chromomagnetic and ordinary magnetic fields can
penetrate into the bulk of the CSC medium and modify
its ground state, producing a new type of color supercon-
ductivity [57]. Finally, note that in dense quark matter,
a superstrong magnetic field is generated due to the pres-
ence of the gluon condensate [58]. In conclusion, we see
that there exist several new physical effects that are in-
trinsically connected with the gluon condensate (external
chromomagnetic fields).
In the present paper, we study the influence of an ex-

ternal chromomagnetic field on the pion condensation phe-
nomenon. This phase transition can also occur in dense
baryon matter, although isotopic asymmetry, with differ-
ent densities of up and down quarks, is needed for this
process to take place. This type of quark matter was al-
ready investigated in the framework of the NJL type of
models, both with and without pion condensation [59–69].
The main purpose of the present paper is to investigate, in
the framework of a NJL model, the behavior of the quark
and pion condensation in the presence of an external chro-
momagnetic field, modeling the gluon condensate. In par-
ticular, we will show that, even for weak coupling of quarks,
the pion condensation effect is induced by an external chro-
momagnetic field and is related to an effective dimensional
reduction. The latter effect leads to a nonanalytic logarith-
mic dependence of the quark and pion condensates on the
field strength in the strong field limit.

2 Quark and pion condensates
in external fields

For a system, composed of two flavored quarks, there exists
the relation nQ = nI3 +nB/2 between the electric charge
density nQ, the baryon charge density nB and the dens-
ity nI3 =

1
2 q̄τ3q of the third isospin component I3 = τ3/2.

Since these quantities are linearly dependent, we will study
in the following the isotopic asymmetry (which means that
different species of quarks have different densities) in dense
quark matter with a nonzero baryon chemical potential
µB. In this case, the chemical potentials µB and µI (where
µI is the isospin chemical potential) are independent pa-
rameters. Note that in another possible case, i.e., µB �= 0,
µQ �= 0 (the last quantity is the electric charge chemical po-
tential), they are no more independent but related through
the electric charge neutrality condition nQ = 0, if one as-
sumes that quarks are in a weak equilibriumwith electrons,
and the whole system is electrically neutral. We restrict
ourselves here to the first possibility, i.e. we suppose that
µB and µI are independent quantities. In our investiga-
tions we also suppose that µB is a rather small quantity. In
this case, as well as at sufficiently high flavor asymmetry,
the color superconductivity effects may be neglected in fa-
vor of the normal quark matter or pion superfluidity effects
(see the recent discussions in [62, 63, 66, 67]).
Let us consider a NJL model of flavored and colored

quarks qiα(i= 1, . . . , Nf , α= 1, . . . , Nc) with Nf = 2, Nc =

3 as numbers of flavors and colors, respectively (for con-
venience, corresponding indices are sometimes suppressed
in what follows), moving in an external chromomagnetic
field. The underlying quark Lagrangian is chosen to con-
tain four-quark interaction terms responsible for sponta-
neous breaking of chiral and flavor symmetries. Hence,
two types of condensates might characterize the ground
state of the model: the quark condensate 〈q̄q〉 (spontaneous
breaking of chiral symmetry), and the pion condensate
〈q̄γ5τ1q〉 (spontaneous breaking of parity and isotopic sym-
metry). In particular, we consider a Lagrangian which de-
scribes dense quark matter with an isotopical asymmetry,
and we neglect diquark interactions and hence the pos-
sible formation of a diquark condensate. Upon performing
the usual bosonization procedure [1–4, 70, 71] and intro-
ducing meson fields σ, π, the four-quark terms are replaced
by Yukawa interactions of quarks with these fields, and the
Lagrangian takes the following form (our notations refer to
4-dimensional Euclidean space with it= x4

1):

L=−q̄
(
iγν∇ν +iµγ0+σ+m+iγ

5τπ+iµ′τ3γ
0
)
q

−
1

4G
(σ2+π2) . (1)

Here µ = (µu+µd)/2 is the chemical potential averaged
over flavors2, µ′ = (µu−µd)/2 is their difference, and G
is the (positive) four-quark coupling constant. Further-
more, ∇µ = ∂µ− igAaµλa/2 is the covariant derivative of
quark fields in the background field F aµν = ∂µA

a
ν −∂νA

a
µ+

gfabcA
b
µA
c
ν determined by the potentialsA

a
µ (a= 1, . . . , 8),

and λa/2 are the generators of the color SUc(3) group. Fi-
nally, τ ≡ (τ1, τ2, τ3) are Pauli matrices in flavor space.
Evidently, the Lagrangian (1) with nonvanishing cur-

rent quark masses, m �= 0, is invariant under the baryon
UB(1) symmetry and the parity transformation P . More-
over, without the µ′-term, it is also invariant under the
isospin SUI(2) group which is reduced to UI3(1) at µ

′ �=
0. At m = 0 and µ′ �= 0 the symmetry group of the ini-
tial model is UB(1)×UI3L(1)×UI3R(1)×P (here the sub-
scripts L, R mean that the corresponding group acts only
on the left, right handed spinors, respectively). It is very
convenient to represent this symmetry as UB(1)×UI3(1)×
UAI3(1)×P , where UI3(1) is the isospin subgroup and

1 We consider γ-matrices in the 4-dimensional Euclidean
space with the metric tensor gµν = diag(−1,−1,−1,−1), and
the relation between the Euclidean and Minkowski time x0(E) =

ix0(M): γ
0
(E) = iγ

0
(M), γ

k
(E) = γ

k
(M). In what follows we denote the

Euclidean Dirac matrices as γµ, suppressing the subscript (E).
They have the following basic properties γ+µ =−γµ, {γµ, γν}=
−2δµν . The charge conjugation operation for Dirac spinors

is defined as ψc(x) = C
(
ψ(x)+

)t
with CγtµC

−1 = −γµ. We
choose the standard representation for the Dirac matrices [78].
The γ5 has the following properties: {γ

µ, γ5} = 0, γ
+
5 = γ

t
5 =

γ5. Hence, one finds for the charge conjugation matrix: C =
γ0γ2, C+ = C−1 = Ct =−C.
2 It is equal to one third of the baryon chemical potential:
µ = µB/3. Since the generator I3 of the third component of
isospin is equal to τ3/2, the quantity µ

′ in (1) is half the isospin
chemical potential, µ′ = µI/2.
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UAI3(1) is the axial isospin subgroup. Quarks are trans-
formed under these groups in the following ways: q→
exp(iατ3)q and q→ exp(iαγ5τ3)q, respectively. In the case
of m = 0 the phase structure of the model (1) is defined
by the competition of only two condensates. One of them
is the quark condensate 〈q̄q〉, and the other is the pion
condensate 〈q̄γ5τ1q〉. If the ground state of the model is
characterized by 〈q̄q〉 �= 0 and 〈q̄γ5τ1q〉= 0, then the axial
symmetry UAI3(1) of the model is spontaneously broken,
but isospin symmetry UI3(1) and parity P remain intact.
However, if 〈q̄γ5τ1q〉 �= 0 and 〈q̄q〉= 0, then only parity P
and the isospin symmetry are spontaneously broken and
the pion condensed phase is realized in the model. As a con-
sequence, in the last case we have 〈q̄τ3q〉 �= 0, i.e., a nonzero
difference in densities of up and down quarks arises (iso-
topic asymmetry of the ground state). Generally speaking,
the inverse is not true, i.e., if there is an isotopic asymmetry
of quark matter, this does not necessarily mean that pion
condensation phenomenon does occur.
In order to investigate the possible generation of quark

and pion condensates in the framework of the initial model
(1), let us introduce the partition function Z of the system:

Z = expWE =

∫
dqdq̄dσdπi exp

[∫
d4xL

]
, (2)

with WE being the Euclidean effective action. Here, the
meson fields can be decomposed as follows:

σ = σ(0)+ δσ, π = π(0)+ δπ ,

where σ(0) and π(0) are the condensate fields, which are
determined by the minimum of the effective action,

δ logZ

δσ(0)
=−

〈
q̄q+

1

2G
(σ(0)+ δσ)

〉
= 0 ,

δ logZ

δπ(0)
=−

〈
q̄iγ5τ q+

1

2G
(π(0)+ δπ)

〉
= 0 .

Notice that the above expectation values are expressed
through functional integrals over the quark and meson
fields, where the latter are calculated by using the sad-
dle point approximation (in what follows, we shall denote
these mean values again by σ and π, respectively). Thus,
instead of (2), we shall deal with the following functional
integral over fermion fields:

Z = expWE =

∫
dqdq̄ exp

[∫
d4xL

]
, (3)

where now σ and π in the Lagrangian (1) are understood
as constant condensates. In the mean field approximation,
where field fluctuations δσ and δπ are neglected, they are
given by the following gap equations:

−
1

2G
σ = 〈q̄q〉 , −

1

2G
π = 〈iq̄τγ5q〉 . (4)

Some remarks about the structure of the external chro-
momagnetic fields Aaν(x) used to model the QCD vacuum
in our further considerations are needed. The QCD phys-
ical vacuum may be interpreted as a region split into

domains with macroscopic extension [72–75]. A nonzero
gluon condensate 〈FF 〉 �= 0 can be approximately inter-
preted as a homogeneous background chromomagnetic
field F aµν generated inside each such domain. Averaging
over all domains results in a zero background chromomag-
netic field; hence color as well as Lorentz symmetries are
not broken.
Assume that the only nonvanishing components of the

background field strength tensor F aµν are F
3
12 = −F

3
21 =

H = const. The above homogeneous chromomagnetic field
can be generated by the following vector potential:

A3ν(x) = (0, 0,Hx
1, 0) ; Aaν(x) = 0 (a �= 3) , (5)

which defines the well-known Matinyan–Savvidy model of
the gluon condensate in QCD [76, 77]. The choice of this
particular form of the backgound field greatly simplifies
the solution of the problem. Strictly speaking, our follow-
ing calculations refer to some given macroscopic domain.
However, the obtained results turn out to depend on color
and rotational (Lorentz) invariant quantities only and are
independent of the concrete domain. The above choice of
the background field implies that only quarks of two colors,
α= 1, 2, do interact with the background field Aaµ. As a re-
sult, the integration over quark degrees of freedom in the
partition function (3) is greatly simplified, and we have

Z =Det(1)(iγ∂+M) ·Det(2)(iγ∇+M) , (6)

where M = m+σ+iγ5πτ +iµγ0+iµ′τ3γ0, and the in-
dices (1) and (2) mean that determinants are calculated
in the 1-dimensional (with color α = 3) and in the 2-
dimensional (with colors α = 1, 2) subspaces of the color
group, respectively. Then the Dirac equations,

(iγ∂+M)ψ = 0 , (iγ∇+M)ψ = 0 ,

have stationary solutions with the energy spectrum ε for
quarks of flavor i and color α= 1, 2, 3 with quantum num-
bers kmoving in the constant background field F aµν(a= 3).
In this case, we arrive at the following Euclidean effective
action:

WE = τ

∫
dp4
2π

∑

λ,α,k,κ

log
[
p24+(ε−κµ)

2
]
− (τL3)

σ2+π2

4G
.

(7)

Here, τ is the imaginary time interval, the sum is over the
signs λ=±1 of the chemical potential µ′, the signs κ=±1
of the chemical potential µ, corresponding to charge conju-
gate contributions of quarks, and color indices α = 1, 2, 3;
and the sum is also over the quantum numbers k of quarks,
with α= 3 for free quarks and the spectrum (λ=±1)

ε= εp,λ =

√(√
(σ+m)2+p2+π23+λµ

′
)2
+π21+π

2
2 ,

(8)

and with α= 1, 2 for quarks with the spectrum (λ=±1)

ε= εk,λ =

√(√
(σ+m)2+Π2k +π

2
3+λµ

′
)2
+π21+π

2
2 ,

(9)
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moving in the background color field F aµν (a = 3). In
the above formula, Π2k stands for the eigenvalues of the
squared Dirac operator−(γ∇)2 with∇= ∂− igAaλa/2.
In the case of finite temperature, T = 1/β > 0, the ther-

modynamic potential Ω = −WE/(βL3) is obtained after
substituting p4→

2π
β
(l+ 12 ), l = 0,±1,±2, . . . ,

Ω =−
1

βL3

∑

λ,κ

∑

k,α

l=+∞∑

l=−∞

log

[(
2π(l+1/2)

β

)2
+(ε−κµ)2

]

+
σ2+π2

4G
+C , (10)

where we introduced a subtraction constant C in such
a way that at σ = π = 0 we have Ω = 0. Next, let us con-
sider the proper time representation

Ω =
1

βL3

∑

λ,κ

∑

k,α

l=+∞∑

l=−∞

∫ ∞

1/Λ2s

ds

s
exp

[
−s

(
2π(l+1/2)

β

)2

− s(ε−κµ)2
]
+
σ2+π2

4G
+C , (11)

where Λs is an ultraviolet cutoff (Λs� σ, |π|). The tem-
perature dependent contribution can be further trans-
formed with the help of the formula

+∞∑

l=−∞

exp
[
−s(2πl/β+x)2

]

=
β

2
√
πs

[

1+2
∞∑

l=1

exp

(
−
β2l2

4s

)
cos(xβl)

]

, (12)

where in our case x= π
β
. Then, calculating the quark con-

densate

〈q̄q〉=

∫
dq̄dqq̄q exp

[∫
d4xL

]

∫
dq̄dq exp

[∫
d4xL

] (13)

and combining the result of (13) and (4), we obtain the
following gap equation:

σ

G
=
σ+m

L3
√
π

∑

λ,κ

∑

k,α

∫ ∞

1/Λ2s

ds
√
s

[

1+2
∞∑

l=1

(−1)le−
β2l2

4s

]

× e−s(ε−κµ)
2 (ε−κµ)

√
ε2−π21−π

2
2

ε
(√
ε2−π21−π

2
2−λµ

′
) . (14)

Here, the first term in the square brackets describes the
T = 0 contribution (it corresponds to the result of integra-
tion over p4 in the initial equation (7)), while the second
term is the finite temperature contribution, T �= 0. The
π-condensate can be obtained in a similar way. For π3 we
have

π3

G
=
π3

L3
√
π

∑

λ,κ

∑

k,α

∫ ∞

1/Λ2s

ds
√
s

[

1+2
∞∑

l=1

(−1)le−
β2l2

4s

]

× e−s(ε−κµ)
2 (ε−κµ)

√
ε2−π21−π

2
2

ε
(√
ε2−π21−π

2
2−λµ

′
) . (15)

By comparing this expression with that for σ, we conclude
that for nonvanishing quark mass m �= 0 this condensate
vanishes, π3 = 0. For π1 (putting π2 = 0 by consideration of
the symmetry of the problem) we have

π1

G
=
π1

L3
√
π

∑

λ,κ

∑

k,α

∫ ∞

1/Λ2s

ds
√
s

[

1+2
∞∑

l=1

(−1)le−
β2l2

4s

]

×
(ε−κµ)

ε
e−s(ε−κµ)

2
. (16)

It follows from (14) and (16) that atm= 0 and µ′ �= 0 there
exist only two different solutions of this system of gap equa-
tions (except for the trivial one with σ = π1 = 0), i.e., a)
σ = 0, π1 �= 0 and b) σ �= 0, π1 = 0.
Thus we have to find out which of these solutions pro-

vides the global minimum of the thermodynamic potential
(10) with µ′ �= 0.
In the limit of a vanishing external field (F aµν = 0), with

π3 = 0, π2 = 0, we have for the particle spectrum

εp,λ =

√(√
(σ+m)2+p2+λµ′

)2
+π21 , (17)

and for the sum over quantum states

1

L3

∑

k,α,κ,λ

= 12
∑

λ

∫
d3p

(2π)3
,

for three color states (α= 1, 2, 3), two spin states, and two
values of κ = ±1. Considering now the case of vanishing
temperature T = 0, we shall omit the cutoff in the lower
limit, 1/Λ2s→ 0, and replace it by the corresponding cut-
off in the momentum integration p2 ≤ Λ2p. It can be easily
seen that the two cutoff parameters Λp and Λs are related
as Λ2s = 2Λ

2
p. Indeed, integration in (7) gives

−
1

(2π)4

∫
dp4

∫

p2<Λ2p

d3p log
(
ε2+p24

)

=−
1

8π2
Λ4p+O(Λ

2
p) ,

with the momentum cutoff p2 ≤Λ2p, and integration in (11)
gives

1

(2π)4

∫
d4p

∫ ∞

1/Λ2s

dz

z
exp

(
−izε2− izp24

)

=−
1

32π2
Λ4s+O(Λ

2
s) ,

with the proper time cutoff z ≥ 1
Λ2s
. In what follows, we

shall denote the Λ2p cutoff by Λ
2, and we shall use it

throughout, substituting Λ2s = 2Λ
2. Now, we can perform

the proper time integration in (16) with the help of the
formula

∑

κ=±1

∫ ∞

0

ds
√
s

(ε−κµ)

ε
e−s(ε−κµ)

2

=

(
ε−µ

|ε−µ|
+1

) √
π

2ε
=
√
π
θ(ε−µ)

ε
. (18)
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As a result, one obtains for the quark and pion condensates
in the vanishing color field background the formulas coin-
ciding with the result of [68, 69],

σ

2G
= 6(σ+m)

∑

λ

∫

p2≤Λ2

d3p

(2π)3
θ(ε−µ)

ε

×

√
(σ+m)2+p2+λµ′
√
(σ+m)2+p2

, (19)

π1

2G
= 6π1

∑

λ

∫

p2≤Λ2

d3p

(2π)3
θ(ε−µ)

ε
. (20)

When the condensate field is taken into consideration,
the spectrum Π2k of the Dirac operator −(γ∇)

2 in the
background field model (5) has six branches, two of which
correspond to quarks that do not interact with the chromo-
magnetic field (α= 3)

Π21,2 = p
2, (21)

and the other four corresponding to two color degrees of
freedom of quarks with “charges” ±g/2 interacting with
the external field. The Π2k spectrum of quarks is now given
by (α= 1, 2)

Π23,4,5,6 = gH

(
n+
1

2
+
ζ

2

)
+p23 , (22)

where ζ = ±1 is the spin projection on the external field
direction, p3 is the longitudinal component of the quark
momentum (−∞< p3 <∞),

p2⊥ = gH

(
n+
1

2

)
(23)

is the transversal component squared of the quark momen-
tum, and n= 0, 1, 2, . . . is the Landau quantum number.
The form of the spectrum is essential for the quark and

pion condensate formation. Using the above expressions
for the energy spectra, we shall next study the quark and
pion condensates in the strong field limit.

3 Asymptotic estimates for strong fields

In this section, we consider the special cases of the above
configurations of background fields in the strong field limit.
Our goal is here to demonstrate that the field is a cat-
alyzing agent for dynamical symmetry breaking, leading
to possible creation of corresponding condensates. The ex-
ternal fields are assumed to be strong as compared to the
values of quark 〈q̄q〉 and pion 〈q̄γ5τ1q〉 condensates that
may be rather small. In this sense, even the expected values
of fields simulating the presence of a gluon condensate,
which we take to be of the order of gH = 0.4–0.6 GeV2,
may be considered as strong (these values of the external
chromomagnetic field gH correspond to the QCD gluon
condensate at zero temperature and zero baryon dens-
ity [79, 80]). As for the other parameters, we may take their
values as in [66–69], i.e., Λ= 0.65GeV, G= 5.01GeV−2.

Consider now the special choice of parameters: µ =
π2 = π3 =m= 0. In this simple massless case, though with
π1 �= 0, σ �= 0, µ′ �= 0, the thermodynamic potential (11)
takes the form

Ω =
1

2
√
πL3

∑

λ,κ

∑

k,α

∫ ∞

1
2Λ2

ds

s
3
2

[

1+2
∞∑

l=1

(−1)le−
β2l2

4s

]

e−sε
2

+
σ2+π21
4G

+C . (24)

Next, consider the zero temperature case, T = 0. Then
the second term in the square bracket in the above expres-
sion vanishes, and we are left with the first term equal to
unity. The above equation describes the effective potential
Veff =Ω|T=0:

Veff(σ, π1) =
1

2
√
π

∫ ∞

1
2Λ2

ds

s
3
2

[

4
∑

λ

∫
d3p

(2π)3
e−sε

2
p,λ

+
1

L3

∑

κ

∑

k,λ,α=1,2

e−sε
2
k,λ

]

+
σ2+π21
4G

+C .

(25)

The first term in the square bracket stands for quarks with
α= 3, when we have

ε2p,λ =
(√
σ2+p2+λµ′

)2
+π21, (26)

and 4 stands for two values of κ=±1 and two values of spin
projection ζ =±1. The second term stands for quarks with
α= 1, 2, where we have

ε2k,λ =

(√
σ2+Π2k +λµ

′

)2
+π21 . (27)

3.1 Symmetric case

Let us first consider the symmetric case, when the chem-
ical potentials for the u-quark and the d-quark are equal,
µ′ = (µu−µd)/2 = 0. Then, the energy of the free quark
with α= 3 becomes

ε2p,λ = p
2+σ2+π21 = p

2+σ21 ,

where σ21 = σ
2+π21.

Consider now the case when the abelian-like back-
ground field is strong enough, gH =O(Λ2), but gH < 2Λ2.
The momentum squared Π2k is given by (22), and summa-
tion over the quark quantum numbers in the chromomag-
netic field gives

1

L3

∑

λ

∑

k,α

= 2
gH

4π

∑

λ

∞∑

n=0

(2− δn0)

∫
dp3
2π
. (28)

In the second term in (25) for quarks with α = 1, 2, due
to the strong field condition, we take only the contribution
of the term with n = 0 in the sum over Landau quantum
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numbers, while the contribution of large quantum numbers
is described similar to the contribution of the free quark
term, and thus we must take the free term three times.
As a result, after integration in the second term over the
p3-component of the quark momentum, we have

Veff(σ1) =
1

4π2

[∫ ∞

1
2Λ2

dse−sσ
2
1
3

s3
+

∫ ∞

1
gH

dse−sσ
2
1
gH

2s2

]

+
σ21
4G
+C . (29)

The cutoff momentum Λ as well as the background field
gH is large, Λ� σ1, gH � σ21, and hence we can approxi-
mately integrate over s in (29). As a result we find the
effective potential

Veff(σ1) =
1

4π2

{

3σ41

[
1

2

(
2Λ2

σ21

)2
−
2Λ2

σ21
+
1

2
log
2Λ2

σ21
+C1

]

+
gHσ21
2

(
gH

σ21
+log

σ21
gH
+C2

)}

+
σ21
4G
+C ,

(30)

where C1, C2 are certain numerical constants. Now, let us
find the minimum σ0 of the thermodynamic potential (30).
Then, the minimum σ0 is described by the solution of the
equation, where we neglect the terms that do not contain
large parameters Λ2 or gH log(gH/σ20),

∂Veff

∂σ21

∣∣∣∣
σ1=σ0

=
1

4π2

[
−6Λ2−3σ20 log

σ20
2Λ2
+
gH

2
log
σ20
gH

]

+
1

4G
= 0 .

Within the approximation of a strong background field,

gH log
(
gH/σ20

)
� σ20 log

(
2Λ2/σ20

)
, (31)

the above equation simplifies to the following form:

1 =
6GΛ2

π2
+G
gH

2π2
log
gH

σ20
, (32)

with the solution

σ0 =

√
gH

2π
exp

(
−
2π2(1− g̃)

GgH

)
, (33)

where the effective coupling constant,

g̃ =
6GΛ2

π2
, (34)

can be arbitrary small, g̃ < 1, contrary to the zero magnetic
field case H = 0, when it should obey g̃ > 1 in order that
the nontrivial solution for σ0 exists. This is a very inter-
esting result. Indeed, we see that at µ′ = 0 and arbitrary
small attraction between quarks (g̃ < 1) the external chro-
momagnetic field catalyzes the dynamical chiral symmetry
breaking and quarks acquire a nonzero mass which is equal

to σ0 (33). In contrast, if H = 0 and g̃ < 1, the quarks re-
main massless and symmetry is unbroken. After removing
the cutoff with the use of (32), the effective potential (30)
takes the form

Veff(σ1) =
gHσ21
8π2

(
log
σ21
σ20
−1

)
, (35)

which is just the effective potential of the 2-dimensional
Gross–Neveu model (see, e.g., [81, 82]). This result shows
that the chromomagnetic catalysis effect is accompanied
by the effective reduction of the space-time dimensional-
ity. Evidently, this is a universally known result, related
to the dimensional reduction, demonstrated in [23–31]. In
particular, it is true even in QED in a strongmagnetic field,
where the effective potential is also reduced to the expres-
sion (35) (see (27) in [83]).
Next, consider the case of flavor asymmetric quarkmat-

ter with µ′ �= 0. For simplicity, µ is taken to be zero as
before. In this case (recall that m= 0), there are two non-
trivial solutions of the gap equations (14) and (16) (see
the remark after (16)), which are the points on the σ- or
π1-axes. So, in order to find the global minimum point,
it is sufficient (and very convenient) to reduce the in-
vestigation of the effective potential Veff(σ, π1), see (25),
as a function of two variables σ and π1 to two particu-
lar cases. First, we shall study Veff as a function of π1
only with σ = 0, π1 �= 0; then as a function of σ with
σ �= 0, π1 = 0. When comparing these two particular cases,
one can obtain the genuine global minimum point of the
effective potential Veff(σ, π1). To simplify our calcula-
tion, we assume that µ′ and gH are large, µ′

2
= O(Λ2)

and gH =O(Λ2).

3.2 The case σ = 0, π1 �= 0

In this case the first term in (25) can be approximately ex-
pressed through the following integrals:

V
(1)
eff (π1) =

1

4π2

⎛

⎝4
∫ ∞

1

µ′2

dsµ′
2

s2
e−sπ

2
1 +3

∫ ∞

1
2Λ2

ds

s3
e−sπ

2
1

⎞

⎠ .

(36)

Integration over s should be approximately performed sep-
arately for the first and second terms in (36) with different
lower limits. Here, we also added the contribution of quarks
with α= 1, 2 with high Landau quantum numbers n� 1.
In the second term in (25), with gH = O(Λ2) and µ′ =

O(Λ), but gH < µ′
2
< 2Λ2, we should estimate the contri-

bution of the two main terms, n= 0 and n= 1, in the sum
over n, which renders the following:

V
(2)
eff (π1) =

gH

8π2

(

1+
2µ′

√
µ′2− gH

)∫ ∞

1
gH

ds

s2
e−sπ

2
1 . (37)

In the second term in the above bracket, we took into ac-
count that the state with n = 1 is two-fold degenerate in



D. Ebert et al.: Quark and pion condensation in a chromomagnetic background field 715

the spin variable. Summing up all the contributions upon
approximate integrating over s, we have

Veff(π1) =
1

4π2

{
3π41
2

[(
2Λ2

π21

)2
−2
2Λ2

π21
− log

π21
2Λ2
+C1

]

+

[

4µ′
4
+
(gH)2

2

(

1+
µ′

√
µ′2− gH

)]

+4µ′
2
π21

(
log
π21
µ′2
+C2

)
+
gHπ21
2

×

(

1+
µ′

√
µ′2− gH

)(
log
π21
gH
+C3

)}

+
π21
4G
+C . (38)

The minimum point π0 of this function obeys the following
stationarity equation: ∂Veff/∂π

2
1|π1=π0 = 0, which gives

1 =
6GΛ2

π2
−
4µ′
2
G

π2
log
π20
µ′2

−
gH

2π2
G

(

1+
µ′

√
µ′2− gH

)

log
π20
gH
, (39)

where the approximation of a strong background field,
gH log(gH/π21)� π

2
1 log(2Λ

2/π21), has been used, similar
to (31). After substituting the above equation into (38), the
effective potential takes the form

Veff(π
2
1) =

π21
4π2

[

4µ′
2
+
gH

2

(

1+
µ′

√
µ′2− gH

)]

×

(
log
π21
π20
−1

)
, (40)

which again, like (35), resembles the effective potential in
the 2-dimensional Gross–Neveu model [81, 82]. Note also
that the minimum π0 of the function (38), under our as-
sumption of a strong color background field, exists even
for weak coupling of the quarks, i.e., at g̃ < 1, while with
zero background field, it can exist only if g̃ > 1. Next, let us
study the behavior of the effective potential (25) as a func-
tion of σ, when π1 = 0.

3.3 The case σ �= 0, π1 = 0

Here again we use the above assumption of gH = O(Λ2)
and µ′ = O(Λ), but gH < µ′

2
< 2Λ2. The term in the ef-

fective potential with α= 3 is determined by the first term
in the expression (25), where now εp,λ =

√
σ2+p2+λµ′.

The main contribution to the integral over p, for large µ′,
is given by large p near p=

√
µ′2−σ2.

Then, the first term, where the contribution of quarks
with α = 1, 2, 3 in the region of very large values of s�

1

µ′2
, 1
gH
is also added, is estimated as

Veff1(σ) =
1

π2
(µ′
2
−σ2)

3
2µ′

+
3σ4

8π2

[(
2Λ2

σ2

)2
−4
Λ2

σ2
− log

σ2

2Λ2
+C1

]

.

(41)

Consider now the contribution of the term with α = 1, 2
in the region of comparatively small values of s close to
the threshold 1/gH. Since we assume that µ′

2
and gH

are of the same order of magnitude and are large, µ′
2
=

O(Λ2)gH =O(Λ2), two terms, n= 0 and n= 1, will make
the main contribution to the sum over n, resulting in the
following:

Veff2(σ) =
gHµ′

8π2

(
1

√
µ′2−σ2

∫ ∞

1

µ′2−σ2

ds

s2

+
2

√
µ′2− gH−σ2

∫ ∞

1

µ′2−σ2−gH

ds

s2

)

=
gHµ′

8π2

(√
µ′2−σ2+2

√
µ′2− gH−σ2

)
.

(42)

The effective potential after summing the contributions
Veff1 and Veff2 is finally estimated as follows:

Veff(σ) =
µ′

π2
(µ′
2
−σ2)

3
2

+
3σ4

8π2

[(
2Λ2

σ2

)2
−4
Λ2

σ2
− log

σ2

2Λ2
+C1

]

+
gHµ′

8π2

(√
µ′2−σ2+2

√
µ′2− gH−σ2

)

+
σ2

4G
+C . (43)

Next, we have to find the minimum point σ0 of this ef-
fective potential, i.e. to solve the stationarity equation
∂Veff/∂σ

2 = 0, which gives for σ0 the equation

−
3µ′
2

2π2
−
3Λ2

2π2
−
3σ20
4π2
log
σ20
2Λ2
−
gH

16π2

(

1+
2µ′

√
µ′2− gH

)

+
1

4G
+O(σ2) = 0 .

It is seen that, contrary to the case with the pion conden-
sate, there are no large terms like gH log(gH/σ2) in the
above equation, and hence, for large terms with Λs, it has
a nontrivial solution σ0 �= 0 only if g̃ > 1, which is the same
condition as for the zero field case (see, e.g., [66, 67]),

σ0 =
√
C̃Λ exp

(
−
Λ2

σ20

(
1−
1

g̃

))
, (44)

where C̃ is a certain numerical constant of order unity.
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Comparing the results of the particular considerations
made above, the following preliminary conclusions can be
made. It is clear that at very small values of the coup-
ling constant G, i.e. at g̃ < 1, and for µ′ > 0, both the
isotopic and the chiral symmetry of the model (1) are
not broken down at H = 0, and quarks are massless par-
ticles (recall that we consider only the case with zero cur-
rent quark mass). However, if an external chromomagnetic
field H is present (and it is rather strong in our analyti-
cal consideration), then the effective potential (25) of the
system acquires a nontrivial global minimum point which
lies on the π1-axis and has the form (σ = 0, π1 = π0 �=
0), where π0 is the solution of the stationarity equation
(39). This means that in this case a nonzero pion conden-
sate 〈q̄γ5τ1q〉 =−π0/2G is generated by an external chro-
momagnetic field (chromomagnetic catalysis of the pion
condensation), and the isotopic symmetry UI3(1) of the
model is spontaneously broken down (see the text after
(1)). Moreover, since the expression for the effective po-
tential in this case resembles the effective potential in the
2-dimensional Gross–Neveu model, one can say that this
effect, similar to the magnetic catalysis phenomenon, is
provided by the dimensional reduction mechanism.
Let us represent some numerical calculations in the

next section, in order to support this conclusion.

4 Numerical results

Consider first the case of a zero external field Fµν = 0, and
flavor symmetric medium µ′ = 0. Moreover, the tempera-
ture and bare quarkmassm are taken to be zero throughout
the present section. The numerical analysis of the behavior
of the effective potential (25), which is just the thermody-
namic potentialΩ for T = 0, was performed for the value of
the coupling constantG= 5.01 GeV−2, taken from [66–69],
and for the quark chemical potential µ = 0 (see Fig. 1). In
this case the quark energy spectrum is symmetric with re-
spect to σ and π1, i.e. the function Veff(σ, π1) depends only
on the single variable

√
σ2+π21. Hence we draw the effect-

ive potential as a function of only one variable, e.g., σ. In
this figure, the picture on the left corresponds to the value of
the cutoff parameter Λ= 0.165GeV (in this case g̃ = 0.08),

Fig. 1. Thermodynamic po-
tential Ω = Veff(σ, 0) at T =
0, µ′ = 0, µ = 0 and G =
5.01 GeV−2 as a function of σ
(in GeV) for Λ = 0.165 GeV,
left picture, and Λ =
0.65 GeV, right picture

whereas the right picture corresponds toΛ= 0.65 GeV (g̃ =
1.29). The figure demonstrates the general feature of the
effective potential at µ′ = 0 and gH = 0. Namely, if the ef-
fective coupling constant g̃ is sufficiently small, g̃ < 1, then
the global minimum point of the effective potential is at the
origin, and the chiral symmetry is not broken (left picture).
However, if g̃ > 1, the effective potential has a nontrivial
globalminimum, and the chiral symmetry is spontaneously
broken down (right picture). The dependence of Veff(σ, π1)
on the two variablesσ and π1 (g̃ = 1.29) is depicted in Fig. 2
forµ= 0.Thepicture is evidently symmetric, as it shouldbe
in this flavor symmetric case.
It is also necessary to note that if g̃ > 1, then at gH = 0

and µ′ > 0 a nonzero pion condensate appears in the model
(1) [66–69]. (In this case, the isotopic symmetry UI3(1) is
broken down.) However, if g̃ < 1, then at gH = 0 and arbi-
trary values of µ′, including zero, the symmetry of the NJL
model (1) remains intact.
Now, in order to present numerical arguments in favor

of the chromomagnetic catalysis of pion condensation, we
will study the effective potential Veff(σ, π1) (25) at µ

′ > 0
and suppose that gH = 0.5GeV2 (this value of gH mimics
the nonzero QCD gluon condensate [79, 80]). Since the cur-
rent quark mass m is equal to zero, the nontrivial station-

Fig. 2. Thermodynamic potential Ω = Veff(σ, π1) at T =
0, gH = 0, µ′ = 0 as a function of σ, π1 for Λp = 0.65, µ= 0
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Fig. 3. Thermodynamic po-
tential Ω = Veff(σ, π1) at T =
0, µ = 0, gH = 0.5 GeV2, Λ =
0.65 GeV, g̃ = 1.29, µ′ =
0.15 GeV as a function of σ (in
GeV) at π1 = 0, left picture,
and of π1 (in GeV) at σ = 0,
right picture

Fig. 4. Thermodynamic po-
tential Ω = Veff(σ, π1) at T =
0, µ = 0, gH = 0.5 GeV2, Λ =
0.46 GeV, g̃ = 0.64, µ′ =
0.1 GeV as a function of σ (in
GeV) at π1 = 0, left picture,
and of π1 (in GeV) at σ = 0,
right picture

Fig. 5. Thermodynamic po-
tential Ω = Veff(σ, π1) at T =
0, µ = 0, gH = 0.5 GeV2, Λ =
0.46 GeV, g̃ = 0.64, µ′ =
0.15 GeV as a function of σ (in
GeV) at π1 = 0, left picture,
and of π1 (in GeV) at σ = 0,
right picture

ary points of the function (25) lie either on the σ- or on the
π1-axis (see the remark after formula (16)). Thus, in order
to find the global minimum point of the effective poten-
tial (25), it is enough to consider the behavior of Veff(σ, π1)
along the coordinate σ and the π1-axis only. The corres-
ponding curves are presented in Fig. 3 for µ′ = 0.15GeV,
and physical values of G = 5.01GeV−2 and Λ= 0.65GeV
(in this case g̃ = 1.29). They demonstrate that, although
a nontrivial stationary point of the thermodynamic poten-
tial Ω = Veff at T = 0 does exist on the σ-axis in a chromo-
magnetic field gH (and this is just a saddle point in this
case), the value of the effective potential at the other sta-
tionary point, σ = 0, π1 = π0 �= 0, is slightly deeper. Our
calculations indicate that with growing µ′ the difference
between the minima of the curves for Veff(π1) and Veff(σ)
increases, and the very minima get deeper. The compari-
son of the results obtained with the known results at zero

background field demonstrated that the background field
deepens the minimum for the pion condensate. Moreover,
we formally considered the interesting case of a smaller
value of Λ, corresponding to g̃ < 1. The calculated effect-
ive potential then has a minimum at a nontrivial value
of π0 for weak coupling of the quarks for g̃ < 1, as well.
The corresponding curves are presented in Figs. 4 and 5
for different values of µ′ = 0.1 GeV, µ′ = 0.15GeV, respec-
tively, and G= 5.01GeV−2 and Λ= 0.46GeV (in this case
g̃ = 0.64).3 Thus, only at this point, σ = 0, π1 = π0 �= 0,

3 In contrastwith thenumerical results, in our analytical inves-
tigations (see theprevious section), the stationary point of the ef-
fectivepotentialwasnot observedon theσ-axis at g̃ < 1.This fact
can be explained by a different domain for the variable µ′ used
in these cases. Indeed, it was supposed in Sect. 3 that µ′ =O(Λ),
whereas for the numerical consideration we usedµ′� Λ.
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the global minimum of the thermodynamic potential (25)
is observed, and the nonzero pion condensate 〈q̄γ5τ1q〉 =
−π0/2G is generated by the external chromomagnetic field
in the model.

5 Conclusions

We considered, in the framework of an NJL model, the
effects of quark and pion condensation in dense quark mat-
ter with and without flavor asymmetry under the influence
of an external chromomagnetic field modeling the gluon
condensate

〈
F aµνF

aµν
〉
. The general conclusion is that the

presence of the chromomagnetic field catalyzes the effect
of quark or pion condensation, depending on the values of
the chemical potential µ′. Indeed, when there is no chro-
momagnetic field, no condensation of quarks or pions takes
place at low values of the effective coupling (34) of the
quarks, g̃ < 1. However, when the chromomagnetic back-
ground field is present, the pion (at µ′ > 0) or quark con-
densation (see the case µ′ = 0 of Sect. 3) take place even
for small values of g̃ < 1 (recall that in our consideration
the current quark mass m was taken to be zero). It should
be emphasized that the phenomenon of the catalysis of the
pion condensation discussed in this paper has the same na-
ture as the catalysis of chiral symmetry breaking discussed
in [38–41, 44–48]. Indeed, it is clear that the pion conden-
sation results from a special type of the vacuum alignment
of the chiral condensate driven by µ′ (i.e., the isospin chem-
ical potential that, of course, breaks the chiral symmetry).
This chemical potential is in favor of the pion rather than
sigma condensation, due to the fact that the pion carries
the isospin charge, while the sigma does not.
If g̃ > 1, the role of the external chromomagnetic fieldH

is to enhance the effect of pion condensation that appears
in the model at µ′ > 0 already at H = 0. For further inves-
tigations, it would be interesting to study the influence of
an external chromomagnetic field (the gluon condensate)
on the pion condensation phenomenon at nonzero current
quark mass m, as well as to consider the chromomagnetic
catalysis effect with another configuration of a background
field, different from (5).
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